Semi-Penalized Inference with False Discovery Rate Control in High-dimensional Linear Regression
نویسندگان
چکیده
Jian Huang1,5,∗, Jin Liu, Shuangge Ma, Cun-Hui Zhang and Yong Zhou Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa, U.S.A. Center of Quantitative Medicine, Duke-NUS Medical School,Singapore Department of Biostatistics, Yale University, New Haven, Connecticut, U.S.A. Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, U.S.A. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China *email: [email protected]
منابع مشابه
Regularized methods for high-dimensional and bi-level variable selection
Many traditional approaches to statistical analysis cease to be useful when the number of variables is large in comparison with the sample size. Penalized regression methods have proved to be an attractive approach, both theoretically and empirically, for dealing with these problems. This thesis focuses on the development of penalized regression methods for high-dimensional variable selection. ...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملA knockoff filter for high-dimensional selective inference
This paper develops a framework for testing for associations in a possibly high-dimensional linear model where the number of features/variables may far exceed the number of observational units. In this framework, the observations are split into two groups, where the first group is used to screen for a set of potentially relevant variables, whereas the second is used for inference over this redu...
متن کاملOn the impact of model selection on predictor identification and parameter inference
We assessed the ability of several penalized regression methods for linear and logistic models to identify outcome-associated predictors and the impact of predictor selection on parameter inference for practical sample sizes. We studied effect estimates obtained directly from penalized methods (Algorithm 1), or by refitting selected predictors with standard regression (Algorithm 2). For linear ...
متن کاملJoint Testing and False Discovery Rate Control in High-Dimensional Multivariate Regression
Multivariate regression with high-dimensional covariates has many applications in genomic 15 and genetic research, in which some covariates are expected to be associated with multiple responses. This paper considers joint testing for regression coefficients over multiple responses and develops simultaneous testing methods with false discovery rate control. The test statistic is based on inverse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016